EE222 Midterm Examination

February 5, 2019
Name \qquad Student ID \qquad

1. (10 points) In VLSI development estimation of required design effort in terms of engineer-months (EMs) is important. A handy empirical formula is shown below: $\mathrm{EM}=(1+D)^{-y r}\left(\mathrm{~A}+B . k^{H}\right)$, where k represents the number of equivalent transistors in the design expressed as
$\mathrm{k}=\mathrm{UNQ}+\mathrm{C} . \mathrm{RPT}+\mathrm{E} \cdot \mathrm{PLA}+\mathrm{F} \cdot \sqrt{R A M}+\mathrm{G} \cdot \sqrt{R O M}$
in units of thousands (which means for 1 M transistors in random access memory, $R A M=1000$) and A, B, C, D, E, F, G, and H are parameters that depend on the designers' experience and CAD tool support for the particular VLSI development .

Three years prior to the current project (thus $\mathrm{yr}=3$), the fitting parameters were
$\mathrm{A}=0, \mathrm{~B}=12, \mathrm{C}=0.15, \mathrm{D}=0.15, \mathrm{E}=0.1, \mathrm{~F}=0.2, \mathrm{G}=0.1$, and $\mathrm{H}=1.2$.
For a GPU development the estimated number of transistors are Random Access Memory3.6M transistors, Read Only Memory- 0.1M transistors, PLA transistors-0.4M transistors, Unique transistors- 0.1 M transistors, Repeated transistors- 0.4 M transistors

For the 20-engineer design team, estimate the numbers of months required for developing the GPU chip described above.
2. (20 points) For low power operation of CMOS circuits, describe the design principles in terms of speed requirement (delay specification), power supply voltages $V_{D D}$ (multiple values), voltage swings $\Delta \mathrm{V}$ at output nodes, switched capacitances $C_{S w}$ (= product of switching frequency and capacitances), and MOS transistors' threshold voltages $V_{\text {th }}$ (multiple values). For total power consumption, please include dynamic (switching) power, leakage power, and short circuit power.
3. (20 points) Explain why the output voltage Z of an $X O R$ gate is only about 50 mV for the time period of $2 \mathrm{mS}<\mathrm{t}<3 \mathrm{mS}$. What would cause this malfunction in this circuit?

4. (20 points) Let us consider an H-tree metal interconnect configuration of a uniform width $1 \mu \mathrm{~m}$ that distributes a clock signal from point C to four regions. Its horizontal length is $1000 \mu \mathrm{~m}$ and its vertical lengths are also $1000 \mu \mathrm{~m}$. Assuming that the line resistance is $0.05 \Omega /$ square, and the effective line capacitance including the fringing field effect is $0.05 \mathrm{fF} / \mathrm{mm}^{2}$, find the Elmore delay from the center point \mathbf{C} to the top left corner A. For simple analysis use a distributed L-type RC model for every $250 \mu \mathrm{~m}$.

5. (30 points) A super buffer can be used to drive a large load capacitance $C_{\text {load }}$ instead of abruptly enlarging the driving gate's transistor sizes. When the total input gate capacitance of an intrinsic inverter is $C_{g}=0.083 \mathrm{fF}$ and $C_{\text {load }}=1.828 \mathrm{pF}$, find the minimum delay achievable in picoseconds. It is known that the ring oscillator frequency is 200 GHz when 15 intrinsic inverters are cascaded. (Hint: The intrinsic inverter delay τ_{o} can be found from the oscillation frequency. Also $C_{\text {load }} / C_{g}=e^{10}$ for $\mathrm{e}=2.718$.)
(for continuation)

